+41 912101300
info@htc-salg.ch

Category: Big Data

Wind energy or Photovoltaic, which is the best?

Nowadays there are several sources that are not affected by quantity limitations because are renewed by the nature in different way, they are the renewable energies. The two most common and developed are wind energy (on-shore and off-shore) and solar (as photovoltaic), with some advantages according to the location where they will be placed, both are governed by environmental conditions.

Wind energy has the greatest advantage high energy density which relates to energy production in kWh and land occupied in sqm because they are developed vertically, on the other hand wind turbines can handle wind speeds from 3 m/s (cut-in) to 25 m/s (cut-out parameter).

Solar, photovoltaic energy has the greatest advantage to be cheaper than wind turbine, no cut-out parameter but they require more land area to achieve same energy production.

Over the years, cost of kW installed of both systems falls down until now when photovoltaic is cheaper the onshore wind energy, passing from barely 5000 usd/kW to less then 1000 usd in 10 years, while wind energy decreasing is less pronounced.

One the parameter that can help the reader to get a clear information of performance difference of both sources is the capacity factor.

Can be defined as the

unitless ratio of actual electrical energy output over a given period of time divided by the theoretical continuous maximum electrical energy output over that period.

The graph shows the capacity factor of all renewable energy sources and can be noticed that photovoltaic has a lower capacity than wind but at a cost that is 3 times lower than offshore wind and 0.5 times lower than onshore wind.

What is Data Driven Decision Making? A quick intro

Data driven decision making (DDD) refers to the practice of basing decisions on the analysis of data, rather than purely on intuition. For example, a marketer could select advertisements based purely on her long experience in the field and her eye for what will work. Or, she could base her selection on the analysis of data regarding how consumers react to different ads. She could also use a combination of these approaches. DDD is not an all-or-nothing practice, and different firms engage in DDD to greater or lesser degrees.

The benefits of data-driven decision-making have been demonstrated conclusively.
Economist Erik Brynjolfsson and his colleagues from MIT and Penn’s Wharton School conducted a study of how DDD affects firm performance (Brynjolfsson, Hitt, & Kim,2011). They developed a measure of DDD that rates firms as to how strongly they use Data Science, Engineering, and Data-Driven Decision Making data to make decisions across the company. They show that statistically, the more datadriven a firm is, the more productive it is—even controlling for a wide range of possible confounding factors. And the differences are not small. One standard deviation higher on the DDD scale is associated with a 4%–6% increase in productivity. DDD also is correlated with higher return on assets, return on equity, asset utilization, and market value, and the relationship seems to be causal.

In 2012, Walmart’s competitor Target was in the news for a data-driven decision-making
case of its own. Like most retailers, Target cares about consumers’ shopping habits, what drives them, and what can influence them. Consumers tend to have inertia in their habits and getting them to change is very difficult. Decision makers at Target knew, however, that the arrival of a new baby in a family
is one point where people do change their shopping habits significantly. In the Target analyst’s words, “As soon as we get them buying diapers from us, they’re going to start buying everything else too.” Most retailers know this and so they compete with each other trying to sell baby-related products to new parents. Since most birth records are public, retailers obtain information on births and send out special offers to the new parents.


However, Target wanted to get a jump on their competition. They were interested in whether they could predict that people are expecting a baby. If they could, they would gain an advantage by making offers before their competitors. Using techniques of data science, Target analyzed historical data on customers who later were revealed to have been pregnant, and were able to extract information that could predict which consumers were pregnant. For example, pregnant mothers often change their diets, their wardrobes, their vitamin regimens, and so on. These indicators could be extracted from historical data, assembled into predictive models, and then deployed in marketing campaigns.

Another case was in 2004 when Hurricane Frances was on its way, barreling across the Caribbean, threatening a direct hit on Florida’s Atlantic coast. Residents made for higher ground, but far away, in Bentonville, Ark., executives at Wal-Mart Stores decided that the situation offered a great opportunity for one of their newest data-driven weapons … predictive technology. A week ahead of the storm’s landfall, Linda M. Dillman, Wal-Mart’s chief information officer, pressed her staff to come up with forecasts based on what had happened when Hurricane Charley struck several weeks earlier. Backed by the trillions of bytes’ worth of shopper history that is stored in Wal-Mart’s data warehouse, she felt that the company
could ‘start predicting what’s going to happen, instead of waiting for it to happen,’ as she put it. (Hays, 2004)

Data Science for Business
by Foster Provost and Tom Fawcett

Natural Gas in Italy

After several months of research, we are happy to announce our first report about LNG & Natural Gas energy in Italy.

With more than 60 pages full of graphs and useful information, our report is a tool for journalists, data-driven companies and marked insider.

Below you can find some excerpts of the content of the book.

If you are interesed in a copy of this selected report, write to us info@htc-sagl.ch

Wind Power Generation

A technical review

Wind power generation is the most preferred among all renewable sources of energy, since the ratio between the dimension of the basement with energy produced is very high if compared with solar or hydro.

Wind power generation is not a new technology. The first turbine used for power generation was built in 1883 in Glasgow Scotland by professor James Blyth

The world’s first windfarm was in 1980 consisting of 20 turbines is built in New Hampshire, but due to a failure, the project was abandoned

But after 10 year of experimenting and testing, the first offshore wind farm was installed in the 90’s in Vindeby (Denmark), with a total power of 450kW.

From that day, improvement in technology, R&D and materials led to increase in power generation by wind with a decreasing cost.

Power generation against wind turbine diameter

In the graph it is possible to see increasing rotor diameter and the worldwide power generation. The swing between 2013-2015 neutralize themself. From the information above it is possible to obtain the specific power generation per meter (as diameter) of the rotor.

Energy produced per meter of the rotor

It is worth to highlight that from 2008 the GW/m remains mostly unchanged until 2016; as said before the swing 2013-2015 is neutral to the analysis.